首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   11篇
  2018年   1篇
  2015年   1篇
  2013年   5篇
  2012年   7篇
  2011年   1篇
  2010年   1篇
  2009年   4篇
  2008年   2篇
  2007年   5篇
  2006年   3篇
  2005年   1篇
  2004年   4篇
  2003年   5篇
  2002年   1篇
  2001年   4篇
  2000年   9篇
  1999年   2篇
  1998年   3篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   4篇
  1989年   2篇
  1988年   6篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1983年   5篇
  1982年   1篇
  1981年   3篇
  1980年   3篇
  1978年   2篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有108条查询结果,搜索用时 906 毫秒
71.
A nucleoside triphosphatase (NTPase) activity appeared to be associated with a highly purified nuclear preparation from rat cardiac ventricles. Different nucleoside triphosphates (UTP > GTP > ITP > CTP) supported this enzymic activity, which was stimulated by Mg` but not by Call. The nuclear NTPase activity could be down regulated by endogenous phosphorylation of a 55,000 Mr protein. Maximal phosphorylation of the 55,000 Mr protein occurred in the presence of Mg2+-ATP. Addition of cAMP, cGMP, Ca2+, Ca2+/phospholipid, Ca2+/calmodulin, and catalytic subunit of cAMP-dependent protein kinase was not associated with any further phosphorylation of the 55,000 Mr protein. However, in the presence of Ca2+/calmodulin or the catalytic subunit of the cAMP-dependent protein kinase additional proteins became phosphorylated, but these had no effect on the Mg2+-NTPase activity. These results indicate that a protein with Mr 55,000 may be involved in the regulation the Mg2+-NTPase activity associated with rat cardiac nuclei.Abbreviations Hg Hemoglobin - GAR Goat Anti-Rabbit antibody - SR Sarcoplasmic Reticulum - NTP Nucleoside Triphosphate - TCA Trichloroacetic acid - PAGE Polyacrylamide gel electrophoresis  相似文献   
72.
Cardiac sarcoplasmic reticulum contains an endogenous calcium-calmodulin-dependent protein kinase and a 22,000-Da substrate, phospholamban. This kinase is half-maximally activated (EC50) by 3.8 +/- 0.3 microM calcium and is absolutely dependent on exogenous calmodulin (EC50 = 49 nM). To determine the effect of this phosphorylation on calcium transport, sarcoplasmic reticulum vesicles (0.5 mg/ml) were preincubated under conditions for optimal phosphorylation (50 mM potassium phosphate, pH 7.0, 10 mM MgCl2, 0.5 mM EGTA, 0.478 mM CACl2, 0.1 microM calmodulin, 0.5 mM ATP). Control sarcoplasmic reticulum was preincubated under identical conditions but in the absence of ATP to avoid phosphorylation. Both control and phosphorylated vesicles were centrifuged and resuspended in 0.3 M sucrose, 20 mM Tris-HCl, 100 mM KCl, pH 7.0, to remove calmodulin and subsequently assayed for calcium (45Ca) transport in the presence of 2.5 mM Tris-oxalate. Phosphorylation of sarcoplasmic reticulum vesicles by calcium-calmodulin-dependent protein kinase resulted in a significant increase (2- to 4-fold) in the rate of calcium transport at low calcium concentrations (less than 3 microM), while calcium transport was minimally affected at higher calcium. Hill coefficients (n) derived from Hill plots of transport data showed no difference between control and phosphorylated sarcoplasmic reticulum (n = 2.0), indicating that phosphorylation does not alter the cooperativity between calcium sites on the calcium pump. The EC50 for calcium activation of calcium transport by control vesicles was 0.86 +/- 0.1 microM calcium, and phosphorylation of phospholamban decreased this value to 0.61 +/- 0.07 microM calcium (n = 7, p less than 0.028), indicating an increase in the apparent affinity for calcium upon phosphorylation. These results were found to be specific for calcium-calmodulin-dependent phosphorylation of phospholamban. Control experiments on the effects of the reactants used in the phosphorylation assay and subsequent centrifugation of sarcoplasmic reticulum showed no alteration of the rate of calcium transport. Therefore, the calcium pump in cardiac sarcoplasmic reticulum appears to be regulated by an endogenous calcium-calmodulin-dependent protein kinase, and this may provide an important regulatory mechanism for the myocardium.  相似文献   
73.
Adrenergic stimulation alters functional dynamics of the heart by mechanisms most likely involving cyclic AMP (cAMP)-dependent protein phosphorylation. In vitro studies indicate that the myofibrils and sarcoplasmic reticulum (SR) may act as effectors of the adrenergic stimulation. cAMP-dependent phosphorylation of troponin I (TnI), one of the regulatory proteins of cardiac myofibrils, results in a decreased steady-state affinity of troponin C (TnC) for calcium, an increase in the off-rate for Ca2+ exchange with TnC, and a rightward shift of the relation between free Ca2+ and myofibrillar force or ATPase. Phosphorylation of phospholamban, a regulatory protein of cardiac SR, results in an increased velocity of Ca2+ transport by SR vesicles, an increased affinity of the transport protein for Ca2+, and an increased turnover of elementary steps of the ATPase reaction. These in vitro findings support the hypothesis that the inotropic response of the heart to catecholamine stimulation involves phosphorylation of TnI and phospholamban. Our in vivo studies with perfused rabbit hearts show that during the peak of the inotropic response to isoproterenol there is a simultaneous phosphorylation of TnI and an 11,000-dalton protein in the SR, most likely the monomeric form of phospholamban.  相似文献   
74.
Canine cardiac sarcoplasmic reticulum (SR) is known to be phosphorylated by adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase on a 22,000-dalton protein, Phosphorylation is associated with an increase in both the initial rate of Ca2+ uptake and the Ca(2+)-ATPase activity which is partially due to an increase in the affinity of the Ca(2+)-Mg(2+)-ATPase (E) of sarcoplasmic reticulum for calcium. In this study, the effect of cAMP-dependent protein kinase phosphorylation on the binding of calcium to the SR and on the dissociation of calcium from the SR was examined. The rate of dissociation of the E x Ca2 was measured directly and was not found to be significantly altered by cAMP-dependent protein kinase phosphorylation. Since the affinity of the enzyme for Ca2+ is equal to the ratio of the on and off rates of calcium, these results demonstrate that the observed change in affinity must be due to an increase in the rate of calcium binding to the Ca(2+)-Mg(2+)-ATPase of SR. In addition, an increase in the degree of positive cooperativity between the two calcium binding sites was associated with protein kinase phosphorylation.  相似文献   
75.
The native form of phospholamban is not known and it is presently under debate whether this protein exists as a monomer or an oligomer in cardiac sarcoplasmic reticulum. The currently accepted model for phospholamban is pentameric, based primarily on its behavior in SDS-polyacrylamide gel electrophoresis. In this study, sucrose density gradient centrifugation and gel filtration chromatography were used to determine the form of phospholamban under nondenaturing conditions. Purified phospholamban or phospholamban present in solubilized cardiac sarcoplasmic reticulum was centrifuged through 5–20% sucrose density gradients in the absence or presence ofn-octylgucoside. The sucrose density gradient fractions were assayed for acid precipitable32P-incorporation in the presence of [-32P]ATP and cAMP-dependent protein kinase catalytic subunit.32P-containing peak fractions were subjected to SDS-polyacrylamide gel electrophoresis and immunoblot analysis, using a phospholamban-polyclonal antibody, to confirm the presence of phospholamban. Purified phosphoblamban migrated with an apparent molecular weight of 25,000 daltons in the sucrose gradients in either the absence or presence of detergent. Phospholamban present in solubilized cardiac sarcoplasmic reticulum migrated with a similar apparent molecular weight when detergent was included in the sucrose gradients. In addition, solubilized cardiac sarcoplasmic reticulum was subjected to gel filtration chromatography in the presence of deoxycholate. Under these conditions phospholamban migrated with an apparent molecular weight of 24,500 daltons. These data suggest that phospholamban prefers an oligomeric assembly and this may be the form present in cardiac sarcoplasmic reticulum membranes.  相似文献   
76.
77.
78.
Human and experimental heart failure is characterized by increases in type-1 protein phosphatase activity, which may be partially attributed to inactivation of its endogenous regulator, protein phosphatase inhibitor-1. Inhibitor-1 represents a nodal integrator of two major second messenger pathways, adenosine 3',5'-cyclic monophosphate (cAMP) and calcium, which mediate its phosphorylation at threonine 35 and serine 67, respectively. Here, using recombinant inhibitor-1 wild-type and mutated proteins, we identified a novel phosphorylation site in inhibitor-1, threonine 75. This phosphoamino acid was phosphorylated in vitro by protein kinase Calpha independently and to the same extent as serine 67, the previous protein kinase Calpha-identified site. Generation of specific antibodies for the phosphorylated and dephosphorylated threonine 75 revealed that this site is phosphorylated in rat and dog hearts. Adenoviral-mediated expression of the constitutively phosphorylated threonine 75 inhibitor-1 in isolated myocytes was associated with specific stimulation of type-1 protein phosphatase activity and marked inhibition of the sarcoplasmic calcium pump affinity for calcium, resulting in depressed contractility. Thus, phosphorylation of inhibitor-1 at threonine 75 represents a new mechanism of cardiac contractility regulation, partially through the alteration of sarcoplasmic reticulum calcium transport activity.  相似文献   
79.
We have isolated two proteolipid fractions from canine cardiac sarcoplasmic reticulum by chromatography on columns of Sepharose CL-6B, and Sephadex LH-60. One, “fraction B”, is phosphorylated by cyclic AMP-dependent protein kinase and was identified as phospholamban, the activator of cardiac sarcoplasmic reticulum. The other, “fraction A”, is not phosphorylated and has an amino acid composition very similar to those of proteolipids we previously isolated from (Na,K)-ATPase.  相似文献   
80.
Impaired sarcoplasmic reticulum calcium cycling and depressed contractility are key characteristics in heart failure. Defects in sarcoplasmic reticulum function are characterized by decreased SERCA2a Ca-transport that is partially attributable to dephosphorylation of its regulator phospholamban by increased protein phosphatase 1 activity. Inhibition of protein phosphatase 1 through activation of its endogenous inhibitor-1 has been shown to enhance cardiac Ca-handling and contractility as well as protect from pathological stress remodeling in young mice. In this study, we assessed the long-term effects of inducible expression of constitutively active inhibitor-1 in the adult heart and followed function and remodeling through the aging process, up to 20 months. Mice with inhibitor-1 had normal survival and similar function to WTs. There was no overt remodeling as evidenced by measures of left ventricular end-systolic and diastolic diameters and posterior wall dimensions, heart weight to tibia length ratio, and histology. Higher phosphorylation of phospholamban at both Ser16 and Thr17 was maintained in aged hearts with active inhibitor-1, potentially offsetting the effects of elevated Ser2815-phosphorylation in ryanodine receptor, as there were no increases in arrhythmias under stress conditions in 20-month old mice. Furthermore, long-term expression of active inhibitor-1 via recombinant adeno-associated virus type 9 gene transfer in rats with pressure-overload induced heart failure improved function and prevented remodeling, associated with increased phosphorylation of phospholamban at Ser16 and Thr17. Thus, chronic inhibition of protein phosphatase 1, through increases in active inhibitor-1, does not accelerate age-related cardiomyopathy and gene transfer of this molecule in vivo improves function and halts remodeling in the long term.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号